Role of endothelial nitric oxide synthase in the development of portal hypertension in the carbon tetrachloride-induced liver fibrosis model.
نویسندگان
چکیده
Portal hypertension (PHT) is a complication of liver cirrhosis and directly increases mortality and morbidity by increasing the propensity of venous hemorrhage. There are two main underlying causations for PHT, increased hepatic resistance and systemic hyperdynamic circulation. Both are related to localized aberrations in endothelial nitric oxide synthase (eNOS) function and NO biosynthesis. This study investigates the importance of eNOS and systemic hyperdynamic-associated hyperemia to better understand the pathophysiology of PHT. Wild-type and eNOS(-/-) mice were given the hepatotoxin CCl(4) for 4-12 wk. Hepatic fibrosis was determined histologically following collagen staining. Portal venous pressure, hepatic resistance, and hyperemia were determined by measuring splenic pulp pressure (SPP), hepatic portal-venous perfusion pressure (HPVPP), abdominal aortic flow (Qao), and portal venous flow (Qpv). Hepatic fibrosis developed equally in wild-type and eNOS(-/-) CCl(4)-exposed mice. SPP, Qao, and Qpv increased rapidly in wild-type CCl(4)-exposed mice, but HPVPP did not. In eNOS(-/-) CCl(4) mice, Qao was not increased, SPP was partially increased, and HPVPP and Qpv were increased nonsignificantly. We concluded that the systemic hyperemia component of hyperdynamic circulation is eNOS dependent and precedes increased changes in hepatic resistance. Alternative mechanisms, possibly involving cyclooxygenase, may contribute. eNOS maintains normal hepatic resistance following CCl(4)-induced fibrosis. Consequently, increased portal pressure following chronic CCl(4) exposure is linked to hyperdynamic circulation in wild-type mice and increased hepatic resistance in eNOS(-/-) mice.
منابع مشابه
A Nitric Oxide-Donating Statin Decreases Portal Pressure with a Better Toxicity Profile than Conventional Statins in Cirrhotic Rats
Statins present many beneficial effects in chronic liver disease, but concerns about safety exist. We evaluated the hepatic effects of a nitric oxide-releasing atorvastatin (NCX 6560) compared to conventional statins. Simvastatin, atorvastatin and NCX 6560 were evaluated in four-week bile duct-ligated rats (BDL) simulating decompensated cirrhosis and in thirteen-week carbon tetrachloride (CCl4)...
متن کاملLIVER DISEASE In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats
Background: Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl4) cirrhotic rat liver. Aims: T...
متن کاملLow NO bioavailability in CCl4 cirrhotic rat livers might result from low NO synthesis combined with decreased superoxide dismutase activity allowing superoxide-mediated NO breakdown: A comparison of two portal hypertensive rat models with healthy controls
BACKGROUND: In cirrhotic livers, the balance of vasoactive substances is in favour of vasoconstrictors with relatively insufficient nitric oxide. Endothelial dysfunction has been documented in cirrhotic rat livers leading to a lower activity of endothelial nitric oxide synthase but this might not be sufficient to explain the low nitric oxide presence. We compared the amount of all nitric oxide ...
متن کاملIn vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats.
BACKGROUND Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl(4)) cirrhotic rat liver. AIMS...
متن کاملEndothelial nitric oxide synthase is not essential for the development of fibrosis and portal hypertension in bile duct ligated mice.
BACKGROUND/AIMS It is postulated that nitric oxide (NO) is responsible for the hyperdynamic circulation of portal hypertension. Therefore, we investigated induction of fibrosis and hyperdynamic circulation in endothelial NO synthase knock-out (KO) mice. METHODS Fibrosis was induced by bile duct ligation. Hemodynamic studies were performed after portal vein ligation. All studies were performed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 297 4 شماره
صفحات -
تاریخ انتشار 2009